Accurate and timely monitoring of plant nitrogen content (PNC) is essential for precision agriculture (PA) and food security. While multispectral unmanned aerial vehicle (UAV) imagery has shown promise in PNC estimation, the optimal feature combination methods of spectral and texture features remain underexplored, and model transferability across different agricultural practices is poorly understood. This study aims to present an innovative approach by integrating 40 texture features and 22 spectral features from UAV multispectral images with machine learning (ML) methods (RF, SVR, and XGBoost) for winter wheat nitrogen content prediction. In addition, through analysis of an 8-year long-term field experiment with rigorous data, the results indicated that (1) the RF and XGboost models incorporating both spectral and texture features achieved good prediction accuracy, with R2 values of 0.98 and 0.99, respectively, RMSE values of 0.10 and 0.07, and MAE values of 0.07and 0.05; (2) models trained on Farmers’ Practice (FP) data showed superior transferability to Ecological Intensification (EI) conditions (R2 = 0.98, RMSE = 0.08, and MAE = 0.05 for XGBoost), while EI-trained models performed less well when applied to FP conditions (R2 = 0.89, RMSE = 0.45, and MAE = 0.35 for XGBoost). These findings established an effective framework for UAV-based PNC monitoring, demonstrating that fused spectral–textural features with FP-trained XGboost can achieve both high accuracy and practical transferability, offering valuable decision-support tools for precision nitrogen management in different farming systems.
Jing Zhang, Gong Cheng, Shaohui Huang, Junfang Yang, Yunma Yang, Suli Xing, Jingxia Wang, Huimin Yang, Haoliang Nie, Wenfang Yang, Kang Yu, & Liangliang Jia (2025). Winter Wheat Nitrogen Content Prediction and Transferability of Models Based on UAV Image Features. Agriculture.